Unique Paper Code	: 32371301
Name Of The Paper	: Sampling Distributions
Name of the Course	: B.Sc.(H) Statistics(under CBCS)
Semester	: 111
Duration	: 3 hrs
M.Marks	: 75

Instructions for candidates:

- 1. All questions carry equal marks
- 2. Attempt any four questions.

1) If X is a random variable and $E(X^2) < \infty$, then prove that $P(|X| \ge a) \le E(X^2)/a^2$, $\forall a \ge 0$. If $\{X_k\}$ is a sequence of independent random variables such that $P(X_k = \pm k^{\alpha}) = \frac{1}{2} \sqrt{\frac{1}{2}} x_{\alpha}$ amine whether WLLN and central limit theorem hold for the sequence $\{X_k\}$.

2) Suppose X₁, X₂,....,X_n (n > 1) are independent variates each distributed as N(0, σ^2). Find the p.d.f. of W = $\frac{X_1}{\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}}$ Why does W not follow the t-distribution? If V = $\frac{W\sqrt{\sum_{i=1}^n x_i^2}}{\sqrt{\sum_{i=2}^n x_i^2}}$ x $\sqrt{\frac{n-1}{n}}$, obtain the distribution of V.

- 3) Show that for F- distribution with (n_1, n_2) d.f., mean is greater than mode. Also discuss the shape of probability curve of F-distribution.
- 4) Let $X_1, X_2, ..., X_n$ be a random sample of size n with common p.d.f.

 $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$

Find the mean and variance of r^{th} order statistic $X_{(r)}$. Also find COV ($X_{(1)}, X_{(n)}$).

- 5) Let X_1 , X_2 ,..., X_n be a random sample from $N(\mu, \sigma^2)$. Derive the p.d.f. of S^2 , where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$. Also find E(S^{2k}). Hence or otherwise find E(S²)and Var(S²).
- 6) The mean yield of two sets of plots and their variability are as given below Examine.
 - Whether the difference in the mean yields of two sets of plots is significant and (i)
 - (ii) Whether the difference in the variability in yields is significant.

	Set of 40 PLots	Set of 60 Plots
Mean Yield per plot	1258kg	1243kg
S.D. per Plot	34kg	28kg

Also obtain the 95% confidence interval for the difference of means.