Unique Paper Code : 32371301
Name Of The Paper : Sampling Distributions
Name of the Course: B.Sc.(H) Statistics(under CBCS)
Semester : III
Duration : 3 hrs
M.Marks : 75

Instructions for candidates:

1. All questions carry equal marks
2. Attempt any four questions.
1) If $X$ is a random variable and $E\left(X^{2}\right)<\infty$, then prove that $P(|X| \geq a) \leq E\left(X^{2}\right) / a^{2}, \forall a \geq 0$. If $\left\{X_{k}\right\}$ is a sequence of independent random variables such that $P\left(X_{k}= \pm k^{\alpha}\right)=1 / 2,0 x a m i n e$ whether WLLN and central limit theorem hold for the sequence $\left\{X_{k}\right\}$.
2) Suppose $X_{1}, X_{2}, \ldots \ldots . . ., X_{n}(n>1)$ are independent variates each distributed as $N\left(0, \sigma^{2}\right)$. Find the p.d.f. of $\mathrm{W}=\frac{\mathrm{X}_{1}}{\sqrt{\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n} x_{\mathrm{i}}^{2}}}}$ Why does W not follow the t -distribution? If $V=\frac{W \sqrt{\sum_{i=1}^{n} x_{i}^{2}}}{\sqrt{\sum_{i=2}^{n} x_{i}^{2}}} \times \sqrt{\frac{n-1}{n}}$ Wher $h$
3) Show that for F - distribution with $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ d.f. , mean is greater than mode. Also discuss the shape of probability curve of F -distribution.
4) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size $n$ with common p.d.f.

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
1, & 0<x<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the mean and variance of $r^{\text {th }}$ order statistic $X_{(r)}$. Also find CeV $\left(X_{(1)}, X_{(n)}\right)$.
5) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right)$. Derive the p.d.f. of $S^{2}$, where $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$. Also find $E\left(S^{2 k}\right)$. Hence or otherwise find $E\left(S^{2}\right)$ and $\operatorname{Var}\left(S^{2}\right)$.
6) The mean yield of two sets of plots and their variability are as given below Examine.
(i) Whether the difference in the mean yields of two sets of plots is significant and
(ii) Whether the difference in the variability in yields is significant.

|  | Set of 40 PLots | Set of 60 Plots |
| :---: | :---: | :---: |
| Mean Yield per plot | 1258 kg | 1243 kg |
| S.D. per Plot | 34 kg | 28 kg |

Also obtain the $95 \%$ confidence interval for the difference of means.

